Hybrid Living Capsules Autonomously Produced by Engineered Bacteria

Author:

Birnbaum Daniel P.,Manjula-Basavanna Avinash,Kan Anton,Joshi Neel S.

Abstract

AbstractBacterial cellulose (BC) has excellent material properties and can be produced cheaply and sustainably through simple bacterial culture, but BC-producing bacteria lack the extensive genetic toolkits of model organisms such as Escherichia coli. Here, we describe a simple approach for producing highly programmable BC materials through incorporation of engineered E. coli. The acetic acid bacterium Gluconacetobacter hansenii was co-cultured with engineered E. coli in droplets of glucose-rich media to produce robust cellulose capsules, which were then colonized by the E. coli upon transfer to selective lysogeny broth media. We show that the encapsulated E. coli can produce engineered protein nanofibers within the cellulose matrix, yielding hybrid capsules capable of sequestering specific biomolecules from the environment and enzymatic catalysis. Furthermore, we produced capsules capable of altering their own bulk physical properties through enzyme-induced biomineralization. This novel system, based on autonomous biological fabrication, significantly expands the functionality of BC-based living materials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3