Abstract
AbstractAlpha-actinin 2 (ACTN2) anchors actin within cardiac sarcomeres. The mechanisms linkingACTN2mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novelACTN2mutations to reveal insights into the physiological function of ACTN2. Patient-derived iPSC-cardiomyocytes harboring ACTN2 protein-truncating variants were hypertrophic, displayed sarcomeric structural disarray, impaired contractility, and aberrant Ca2+-signaling. In heterozygous indel cells, the truncated protein incorporates into cardiac sarcomeres, leading to aberrant Z-disc structure. In homozygous stop-gain cells, affinity-purification mass spectrometry reveals an intricate ACTN2 interactome with sarcomere and sarcolemma-associated proteins. Loss of the C-terminus of ACTN2 disrupts interaction with ACTN1 and GJA1, two sarcolemma-associated proteins, that may lead to the clinical arrhythmic and relaxation defects. The causality of the stop-gain mutation was verified using CRISPR-Cas9 gene editing. Together, these data advance our understanding of the role of ACTN2 in the human heart and establish recessive inheritance ofACTN2truncation as causative of disease.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献