Naturalistic spatiotemporal stimulus modulation during epiretinal stimulation increases the persistence of retinal ganglion cell responsivity

Author:

Chenais Naïg Aurélia Ludmilla,Leccardi Marta Jole Ildelfonsa Airaghi,Ghezzi Diego

Abstract

AbstractObjectiveRetinal stimulation in blind patients evokes the sensation of discrete points of light called phosphenes, which allows them performing visual guided tasks, such as orientation, navigation, object recognition, object manipulation and reading. However, the clinical benefit of artificial vision in profoundly blind patients is still tenuous, as several engineering and biophysical obstacles keep it away from natural perception. The relative preservation of the inner retinal neurons in hereditary degenerative retinal diseases, such as retinitis pigmentosa, supports artificial vision through the network-mediated stimulation of retinal ganglion cells. However, the response of retinal ganglion cells to repeated electrical stimulation rapidly declines, primarily because of the intrinsic desensitisation of their excitatory network. In patients, upon repetitive stimulation, phosphenes fade out in less than half of a second, which drastically limits the understanding of the percept.ApproachA more naturalistic stimulation strategy, based on spatiotemporal modulation of electric pulses, could overcome the desensitisation of retinal ganglion cells. To investigate this hypothesis, we performed network-mediated epiretinal stimulations paired to electrophysiological recordings in retinas explanted from both male and female retinal degeneration 10 mice.Main resultsThe results showed that the spatial and temporal modulation of the network-mediated epiretinal stimulation prolonged the responsivity of retinal ganglion cells from 400 ms up to 4.2 s.SignificanceA time-varied, non-stationary and interrupted stimulation of the retinal network, mimicking involuntary microsaccades, might reduce the fading of the visual percept and improve the clinical efficacy of retinal implants.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3