Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains

Author:

Bersaglieri Cristiana,Kresoja-Rakic Jelena,Gupta Shivani,Bär Dominik,Kuzyakiv Rostyslav,Santoro RaffaellaORCID

Abstract

AbstractEukaryotic chromosomes are folded into hierarchical domains, enabling the organization of the genome into functional compartments. Nuclear periphery and nucleolus are two nuclear landmarks thought to contribute to repressive chromosome architecture. However, while the role of nuclear lamina (NL) in genome organization has been well documented, the function of the nucleolus remains under-investigated due to the lack of methods for genome-wide maps of nucleolar associated domains (NADs). Here we established a method based on a Dam-fused engineered nucleolar histone H2B that marks DNA contacting the nucleolus. NAD-maps of ESCs and neural progenitors revealed layers of genome compartmentalization with distinct, repressive chromatin states based on the interaction with the nucleolus, NL, or both. NADs showed higher H3K9me2 and lower H3K27me3 content than regions exclusively interacting with NL. Upon ESC differentiation, chromosomes around the nucleolus acquire a more compact, rigid architecture whereas NADs specific for ESCs decrease their interaction strength within the repressive B-compartment strength, unlocking neural genes from repressive nuclear environment. The methodologies here developed will make possible to include the contribution of the nucleolus in future studies investigating the relationship between nuclear space and genome function.

Publisher

Cold Spring Harbor Laboratory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3