A modified fluctuation test for elucidating drug resistance in microbial and cancer cells

Author:

Bokes Pavol,Singh Abhyudai

Abstract

AbstractClonal populations of microbial and cancer cells are often driven into a drug-tolerant persister state in response to drug therapy, and these persisters can subsequently adapt to the new drug environment via genetic and epigenetic mechanisms. Estimating the frequency with which drug-tolerance states arise, and its transition to drug-resistance, is critical for designing efficient treatment schedules. Here we study a stochastic model of cell proliferation where drug-tolerant persister cells transform into a drug-resistant state with a certain adaptation rate, and the resistant cells can then proliferate in the presence of the drug. Assuming a random number of persisters to begin with, we derive an exact analytical expression for the statistical moments and the distribution of the total cell count (i.e., colony size) over time. Interestingly, for Poisson initial conditions the noise in the colony size (as quantified by the Fano factor) becomes independent of the initial condition and only depends on the adaptation rate. Thus, experimentally quantifying the fluctuations in the colony sizes provides an estimate of the adaptation rate, which then can be used to infer the starting persister numbers from the mean colony size. Overall, our analysis introduces a modification of the classical Luria–Delbrück experiment, also called the “Fluctuation Test”, providing a valuable tool to quantify the emergence of drug resistance in cell populations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3