Application of respiratory metagenomics for COVID-19 patients on the intensive care unit to inform appropriate initial antimicrobial treatment and rapid detection of nosocomial transmission

Author:

Charalampous ThemoulaORCID,Alcolea-Medina Adela,Snell Luke B.ORCID,Williams Tom G.SORCID,Batra Rahul,Camporota LuigiORCID,Meadows Christopher I.S.,Wyncoll DuncanORCID,Barrett Nicholas A.ORCID,Hemsley Carolyn J.ORCID,Bryan Lisa,Newsholme WilliamORCID,Boyd Sara E.ORCID,Green Anna,Mahadeva UlaORCID,Patel Amita,Cliff Penelope R.ORCID,Page Andrew J.ORCID,O’Grady JustinORCID,Edgeworth Jonathan D.ORCID

Abstract

AbstractBackgroundClinical metagenomics (CMg) is being evaluated for translation from a research tool into routine diagnostic service, but its potential to significantly improve management of acutely unwell patients has not been demonstrated. The SARS-CoV-2 pandemic provides impetus to determine that benefit given increased risk of secondary infection and nosocomial transmission by multi-drug resistant (MDR) pathogens linked with expansion of critical care capacity.MethodsProspective evaluation of CMg using nanopore sequencing was performed on 43 respiratory samples over 14 weeks from a cohort of 274 intubated patients across seven COVID-19 intensive care units.ResultsBacteria or fungi were cultured from 200 (73%) patients, with a predominance of Klebsiella spp. (31%) and C. striatum (7%) amongst other common respiratory pathogens. An 8 hour CMg workflow was 93% sensitive and 81% specific for bacterial identification compared to culture, and reported presence or absence of β-lactam resistance genes carried by Enterobacterales that would modify initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus (4 positive and 39 negative samples). Single nucleotide polymorphism (SNP)-typing using 24 hour sequence data identified an MDR-K. pneumoniae ST307 outbreak involving 4 patients and an MDR-C. striatum outbreak potentially involving 14 patients across three ICUs.ConclusionCMg testing for ICU patients provides same-day pathogen detection and antibiotic resistance prediction that significantly improves initial treatment of nosocomial pneumonia and rapidly detects unsuspected outbreaks of MDR-pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3