Abstract
AbstractTarget protection proteins bind to antibiotic targets and confer resistance to the host organism. One class of such proteins, termed antibiotic resistance (ARE) ATP binding cassette (ABC) proteins of the F-subtype (ARE ABCFs), are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition by antibiotics that target the large ribosomal subunit. Using single-particle cryo-EM, we have solved the structure of ARE ABCF–ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a comparative approach to understanding how these proteins mediate antibiotic resistance on the ribosome. We present evidence of mechanistically diverse allosteric relays converging on a few peptidyltransferase center (PTC) nucleotides, and propose a general model of antibiotic resistance mediated by these ARE ABCFs.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献