Abstract
ABSTRACTCortical stimulation is emerging as an experimental tool in basic research and a promising therapy for a range of neuropsychiatric conditions. As multielectrode arrays enter clinical practice, the possibility of using spatiotemporal patterns of electrical stimulation to induce desired physiological patterns has become theoretically possible, but in practice can only be implemented by trial-and-error because of a lack of predictive models. Experimental evidence increasingly establishes travelling waves as fundamental to cortical information-processing, but we lack understanding how to control wave properties despite rapidly improving technologies. This study uses a hybrid biophysical-anatomical and neural-computational model to predict and understand how a simple pattern of cortical surface stimulation could induce directional traveling waves via asymmetric activation of inhibitory interneurons. It reveals local circuit mechanisms to control spatiotemporal cortical dynamics and predicts interventions that can be developed to treat a broad range of cognitive disorders.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献