Acute ethanol stress induces sumoylation of conserved chromatin structural proteins in Saccharomyces cerevisiae

Author:

Bradley Amanda I.ORCID,Marsh Nicole M.,Borror Heather R.,Mostoller Kaitlyn E.,Gama Amber I.,Gardner Richard G.ORCID

Abstract

AbstractStress is a ubiquitous part of life that disrupts cellular function and, if unresolved, can irreparably damage essential biomolecules and organelles. All organisms can experience stress in the form of unfavorable environmental conditions including exposure to extreme temperatures, hypoxia, reactive oxygen species, alcohol, or shifts in osmolarity. To survive, organisms must sense these changes then react and adapt. One highly conserved adaptive response to stress is through protein sumoylation, which is a post-translational modification by the small ubiquitin-like modifier (SUMO) protein. In this study, we examine the effects of acute ethanol stress on protein sumoylation in the budding yeast Saccharomyces cerevisiae. Although ethanol induces protein sumoylation, the targets and roles of sumoylation are largely unknown. Here, we found that cells exhibit a transient sumoylation response after exposure of cells to ≤ 7.5% volume/volume ethanol. The response peaks at 15 minutes and resolves by 60 minutes, indicating that cells have an adaptive response to low concentrations of ethanol. By contrast, the sumoylation response becomes chronic at 10% ethanol stress with no resolution by 60 minutes. To identify key targets of ethanol-induced sumoylation, we performed mass spectrometry analyses and identified 18 proteins with increased sumoylation after acute ethanol exposure, with 15 identified as known chromatin-associated proteins. Two of these proteins are the chromatin structural proteins Smc5 and Smc6, which are sumoylated by the activity of the SUMO ligase Mms21. Ethanol-induced Smc5/6 sumoylation occurs during G1 and G2M phases of the cell cycle but is abrogated during S phase despite the fact that other proteins are sumoylated during this phase. Acute ethanol exposure leads to formation of Rad52 foci indicating DNA damage similar to that observed with the addition of methyl methanesulfonate (MMS), which is an alkylating agent that damages DNA. Whereas MMS exposure induces the intra-S phase DNA damage checkpoint as observed by Rad53 phosphorylation, ethanol exposure does not induce the intra-S phase checkpoint and prevents Rad53 phosphorylation when added with MMS. From these results, we propose that ethanol induces a structural change in chromatin, possibly through DNA damage, and this causes sumoylation of conserved chromatin-associated proteins, including Smc5 and Smc6.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3