Landmark-Centered Coding in Frontal Cortex Visual Responses

Author:

Schütz Adrian,Bharmauria VishalORCID,Yan Xiaogang,Wang Hongying,Bremmer Frank,Crawford J. Douglas

Abstract

SummaryVisual landmarks influence spatial cognition [1–3], navigation [4,5] and goal-directed behavior [6–8], but their influence on visual coding in sensorimotor systems is poorly understood [6,9–11]. We hypothesized that visual responses in frontal cortex control gaze areas encode potential targets in an intermediate gaze-centered / landmark-centered reference frame that might depend on specific target-landmark configurations rather than a global mechanism. We tested this hypothesis by recording neural activity in the frontal eye fields (FEF) and supplementary eye fields (SEF) while head-unrestrained macaques engaged in a memory-delay gaze task. Visual response fields (the area of visual space where targets modulate activity) were tested for each neuron in the presence of a background landmark placed at one of four oblique configurations relative to the target stimulus. 102 of 312 FEF and 43 of 256 SEF neurons showed spatially tuned response fields in this task. We then fit these data against a mathematical continuum between a gaze-centered model and a landmark-centered model. When we pooled data across the entire dataset for each neuron, our response field fits did not deviate significantly from the gaze-centered model. However, when we fit response fields separately for each target-landmark configuration, the best fits shifted (mean 37% / 40%) toward landmark-centered coding in FEF / SEF respectively. This confirmed an intermediate gaze / landmark-centered mechanism dependent on local (configuration-dependent) interactions. Overall, these data show that external landmarks influence prefrontal visual responses, likely helping to stabilize gaze goals in the presence of variable eye and head orientations.HighlightsPrefrontal visual responses recorded in the presence of visual landmarksResponse fields showed intermediate gaze / landmark-centered organizationThis influence depended on specific target-landmark configurations

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. Wiener, J.M. , Kmecova, H. , and de Condappa, O. (2012). Route repetition and route retracing: Effects of cognitive aging. Front. Aging Neurosci. 4. Available at: /pmc/articles/PMC3356884/?report=abstract [Accessed September 11, 2020].

2. Finding the return path: Landmark position effects and the influence of perspective;Front. Psychol,2016

3. Independent working memory resources for egocentric and allocentric spatial information;PLOS Comput. Biol,2019

4. Quantifying the interactions between allo- and egocentric representations of space

5. Fischer, L.F. , Soto-Albors, R.M. , Buck, F. , and Harnett, M.T. (2020). Representation of visual landmarks in retrosplenial cortex. Elife 9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3