Abstract
SummaryDespite being a critical molecule for neurobiology and brain health, mass spectrometry imaging (MSI) of cholesterol has been under reported compared to other lipids, due to the difficulty in ionising the sterol molecule. In the present work we have employed an on-tissue enzyme-assisted derivatisation strategy to improve detection of cholesterol in brain tissue sections. We report distribution and levels of cholesterol across specific brain structures of the mouse brain, in a model of Niemann-Pick type C1 (NPC1) disease, and during brain development. MSI revealed how cholesterol changes during development and that in the adult is highest in pons and medulla of the brain stem. Cholesterol was significantly reduced in the corpus callosum and other brain regions in the Npc1 null mouse, confirming hypomyelination at the molecular level. Our study demonstrates the potential of MSI to the study of sterols in neuroscience.
Publisher
Cold Spring Harbor Laboratory