Abstract
AbstractSoil heterotrophic respiration-driven CO2 emissions, its impact on global warming and the mechanistic roles of soil bacterial communities in this process have been an area of active research. However, our knowledge regarding the effects of environmental changes on soil bacterial communities is limited. To this end, the climate-sensitive high-altitude alpine ecosystems offer ideal opportunities to investigate relationship between climate change and bacterial communities. While data from several high-altitude mountain regions suggest that local environment factors and geological patterns govern bacterial communities, no information is available from the Himalaya. Here we provide baseline information on seasonal soil bacterial community diversity and composition along a 3200-4000 m elevation gradient covering four alpine habitats (subalpine forest, alpine scrub, alpine meadow and moraine) in Gangotri National Park, western Himalaya. Bacterial metabarcoding data from 36 field-collected samples showed no elevation trend in the bacterial richness and a non-monotonous decrease in their diversity. Further, their community diversity and composition varied significantly among habitats along elevation but were stable seasonally within each habitat. The richness was primarily influenced by soil inorganic carbon (SOC) and total nitrogen (TN), whereas temperature, SOC and TN affected diversity and composition patterns. Given the importance of the Himalaya in the context of global carbon cycle this information will help in accurate modeling of climate adaptation scenarios of bacterial niches and their downstream impacts towards climate warming.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献