Author:
Al-Sharif Noor B,St-Onge Etienne,Theaud Guillaume,Evans Alan C,Descoteaux Maxime
Abstract
AbstractDiffusion-weighted magnetic resonance imaging (dMRI) allows for the in-vivo assessment of anatomical white matter in the brain, thus allowing the depiction of structural connectivity. Using structural processing techniques and related methods, a growing body of literature has illustrated that connectomics is a crucial aspect to assessing the brain in health and disease. The Pediatric Imaging Neurocognition and Genetics (PING) dataset was collected and released openly to contribute to the assessment of typical brain development in a pediatric sample. This current work details the processing of diffusion-weighted images from the PING dataset, including rigorous quality assessment and fine-tuning of parameters at every step, to increase the accessibility of these data for connectomic analysis. This processing provides state-of-the-art diffusion measures, both classical diffusion tensor imaging (DTI) and more advanced HARDI-based metrics, enabling the evaluation not only of structural white matter but also of integrated multimodal analyses, i.e. combining structural information from dMRI with functional or gray matter analyses.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献