Abstract
AbstractEnergy conversion in aerobic organisms involves an electron current from low-potential donors, such as NADH and succinate, to dioxygen through the membrane-bound respiratory chain. Electron transfer is coupled to transmembrane proton transport that maintains the electrochemical proton gradient used to produce ATP and drive other cellular processes. Electrons are transferred between respiratory complexes III and IV (CIII and CIV) by water-soluble cyt.c. InS. cerevisiaeand some other organisms, these complexes assemble into larger CIII2CIV1/2supercomplexes, the functional significance of which has remained enigmatic. In this work, we measured the kinetics of theS. cerevisiaesupercomplex’s cyt.c-mediated QH2:O2oxidoreductase activity under various conditions. The data indicate that the electronic link between CIII and CIV is confined to the surface of the supercomplex. Cryo-EM structures of the supercomplex with cyt.creveal distinct states where the positively-charged cyt.cis bound either to CIII or CIV, or resides at intermediate positions. Collectively, the structural and kinetic data indicate that cyt.ctravels along a negatively-charged surface patch of the supercomplex. Thus, rather than enhancing electron-transfer rates by decreasing the distance cyt.cmust diffuse in 3D, formation of the CIII2CIV1/2supercomplex facilitates electron transfer by 2D diffusion of cyt.c. This mechanism enables the CIII2CIV1/2supercomplex to increase QH2:O2oxidoreductase activity and suggests a possible regulatory role for supercomplex formation in the respiratory chain.Significance StatementIn the last steps of food oxidation in living organisms, electrons are transferred to oxygen through the membrane-bound respiratory chain. This electron transfer is mediated by mobile carriers such as membrane-bound quinone and water-soluble cyt.c. The latter transfers electrons from respiratory complex III to IV. In yeast these complexes assemble into III2IV1/2supercomplexes, but their role has remained enigmatic. This study establishes a functional role for this supramolecular assembly in the mitochondrial membrane. We used cryo-EM and kinetic studies to show that cyt.cshuttles electrons by sliding along the surface of III2IV1/2(2D diffusion). The structural arrangement into III2IV1/2supercomplexes suggests a mechanism to regulate cellular respiration.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献