Stenoparib, an inhibitor of cellular poly (ADP-ribose) polymerase (PARP), blocks replication of the SARS-CoV-2 human coronavirus in vitro

Author:

Stone Nathan E.,Jaramillo Sierra A.,Jones Ashley N.,Vazquez Adam J.,Martz Madison,Versluis Lora M.,Raniere Marlee O.,Nunnally Haley E.,Zarn Katherine E.,Nottingham Roxanne,Sahl Jason W.,Wagner David M.,Knudsen Steen,Settles Erik W.,Keim Paul S.,French Christopher T.

Abstract

ABSTRACTBy late 2020, the coronavirus disease (COVID-19) pandemic, caused by SARS-CoV-2 has caused tens of millions of infections and over 1 million deaths worldwide. A protective vaccine and more effective therapeutics are urgently needed. We evaluated a new PARP inhibitor, stenoparib, which was recently advanced to Stage II clinical trials for treatment of ovarian cancer, for activity against human respiratory coronaviruses, including SARS-CoV-2, in vitro. Stenoparib exhibits dose-dependent suppression of SARS-CoV-2 multiplication and spread in Vero E6 monkey kidney and Calu-3 human lung adenocarcinoma cells. Stenoparib was also strongly inhibitory to the HCoV-NL63 human seasonal respiratory coronavirus. Compared to remdesivir, which inhibits viral replication downstream of cell entry, stenoparib impedes entry and post-entry processes as determined by time-of-addition (TOA) experiments. Moreover, a 10 μM dosage of stenoparib – below the approximated 25.5 μM half-maximally effective concentration (EC50), combined with 0.5 μM remdesivir suppressed coronavirus growth by more than 90%, indicating a potentially synergistic effect for this drug combination. Stenoparib as a standalone or as part of combinatorial therapy with remdesivir should be a valuable addition to the arsenal against COVID-19.ImportanceNew therapeutics are urgently needed in the fight against COVID-19. Repurposing drugs that are either already approved for human use or are in advanced stages of the approval process can facilitate more rapid advances toward this goal. The PARP inhibitor stenoparib may be such a drug, as it is currently in Stage II clinical trials for the treatment of ovarian cancer and its safety and dosage in humans has already been established. Our results indicate that stenoparib possesses strong antiviral activity against SARS-CoV-2 and other coronaviruses in vitro. This activity appears to be based on multiple modes of action, where both pre-entry and post-entry viral replication processes are impeded. This may provide a therapeutic advantage over many current options that have a narrower target range. Moreover, our results suggest that stenoparib and remdesivir in combination may be especially potent against coronavirus infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3