In vivo optical metabolic imaging of long-chain fatty acid uptake in orthotopic models of triple negative breast cancer

Author:

Madonna Megan C.ORCID,Duer Joy E.,Lee Joyce V.ORCID,Williams Jeremy,Avsaroglu Baris,Zhu CaigangORCID,Deutsch Riley,Wang Roujia,Crouch Brian T.ORCID,Hirschey Matthew DORCID,Goga AndreiORCID,Ramanujam NirmalaORCID

Abstract

AbstractTargeting a tumor’s metabolic dependencies is a clinically actionable therapeutic approach, but identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical models to aid in the development of new drugs to restrict uptake or utilization of these nutrients. We describe a fast and dynamic approach to image fatty acid uptake in vivo, a tool relevant to study tumor metabolic reprogramming or for studying the effectiveness of drugs targeting lipid metabolism spanning beyond breast cancer and optical imaging alone. Specifically, we developed a quantitative optical approach to spatially and longitudinally map the kinetics of long-chain fatty acid uptake in in vivo murine models of breast cancer using a fluorescently labeled palmitate molecule, Bodipy FL c16. We chose intra-vital microscopy of mammary tumor windows to validate our approach in two orthotopic breast cancer models: a MYC-overexpressing transgenic triple-negative breast cancer (TNBC) model and a murine model of the 4T1 family. Following injection, Bodipy FL c16 fluorescence increased and reached its maximum after approximately 30 minutes, with the signal remaining stable during the 30-80-minute post-injection period. We used the fluorescence at 60 minutes (Bodipy60), the mid-point in the plateau region, as a summary parameter to quantify Bodipy FL c16 fluorescence in subsequent experiments. Using our imaging platform, we observed a two- to four-fold decrease in fatty acid uptake in response to the downregulation of the MYC oncogene consistent with findings from in vitro metabolic assays. In contrast, our imaging studies report an increase in fatty acid uptake with tumor aggressiveness (6NR, 4T07, and 4T1), and uptake was significantly decreased after treatment with a fatty acid transport inhibitor, perphenazine, in both normal mammary pads and in the most aggressive 4T1 tumor model. Our approach fills an important gap between in vitro assays, which provide rich metabolic information but at static time points, and imaging approaches that can visualize metabolism in whole organs, but which suffer from poor resolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3