Abstract
Complex dynamical fluctuations, from molecular noise within cells, collective intelligence, brain dynamics or computer traffic have been shown to display noisy behaviour consistent with a critical state between order and disorder. Living close to the critical point can have a number of adaptive advantages and it has been conjectured that evolution could select (and even tend to) these critical states. One way of approaching such state is by means of so called self-organized criticality (SOC) where the system poises itself close to the critical point. Is this the case of living cells? It is difficult to test this idea given the enormous dimensionality associated with gene and metabolic webs. In this paper we present an alternative approach: to engineer synthetic gene networks displaying SOC behaviour. This is achieved by exploiting the presence of a saturation (congestion) phenomenon of the ClpXP protein degradation machinery in E. coli cells. Using a feedback design that detects and then reduces ClpXP congestion, a critical motif is built from a two-gene network system, where SOC can be successfully implemented. Both deterministic and stochastic models are used, consistently supporting the presence of criticality in intracellular traffic. The potential implications for both cellular dynamics and designed intracellular noise are discussed.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Heterogeneity extends criticality;Frontiers in Complex Systems;2023-05-03