Engineering self-organized criticality in living cells

Author:

Vidiella BlaiORCID,Guillamon Antoni,Sardanyés Josep,Maull Victor,Conde-Pueyo Nuria,Solé Ricard

Abstract

Complex dynamical fluctuations, from molecular noise within cells, collective intelligence, brain dynamics or computer traffic have been shown to display noisy behaviour consistent with a critical state between order and disorder. Living close to the critical point can have a number of adaptive advantages and it has been conjectured that evolution could select (and even tend to) these critical states. One way of approaching such state is by means of so called self-organized criticality (SOC) where the system poises itself close to the critical point. Is this the case of living cells? It is difficult to test this idea given the enormous dimensionality associated with gene and metabolic webs. In this paper we present an alternative approach: to engineer synthetic gene networks displaying SOC behaviour. This is achieved by exploiting the presence of a saturation (congestion) phenomenon of the ClpXP protein degradation machinery in E. coli cells. Using a feedback design that detects and then reduces ClpXP congestion, a critical motif is built from a two-gene network system, where SOC can be successfully implemented. Both deterministic and stochastic models are used, consistently supporting the presence of criticality in intracellular traffic. The potential implications for both cellular dynamics and designed intracellular noise are discussed.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heterogeneity extends criticality;Frontiers in Complex Systems;2023-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3