Valid statistical approaches for clustered data: A Monte Carlo simulation study

Author:

McLaurin Kristen A.,Fairchild Amanda J.,Shi Dexin,Booze Rosemarie M.ORCID,Mactutus Charles F.ORCID

Abstract

AbstractThe translation of preclinical studies to human applications is associated with a high failure rate, which may be exacerbated by limited training in experimental design and statistical analysis. Nested experimental designs, which occur when data have a multilevel structure (e.g., in vitro: cells within a culture dish; in vivo: rats within a litter), often violate the independent observation assumption underlying many traditional statistical techniques. Although previous studies have empirically evaluated the analytic challenges associated with multilevel data, existing work has not focused on key parameters and design components typically observed in preclinical research. To address this knowledge gap, a Monte Carlo simulation study was conducted to systematically assess the effects of inappropriately modeling multilevel data via a fixed effects ANOVA in studies with sparse observations, no between group comparison within a single cluster, and interactive effects. Simulation results revealed a dramatic increase in the probability of type 1 error and relative bias of the standard error as the number of level-1 (e.g., cells; rats) units per cell increased in the fixed effects ANOVA; these effects were largely attenuated when the nesting was appropriately accounted for via a random effects ANOVA. Thus, failure to account for a nested experimental design may lead to reproducibility challenges and inaccurate conclusions. Appropriately accounting for multilevel data, however, may enhance statistical reliability, thereby leading to improvements in translatability. Valid analytic strategies are provided for a variety of design scenarios.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3