Modeling the spread of Covid-19 under active management

Author:

Cherednik Ivan

Abstract

Classical approaches to modeling the spread of epidemics are based on two assumptions: the exponential growth of the total number of infections and the saturation due to the herd immunity. With Covid-19, the growth is essentially power-type, especially during the middle stages, and the saturation is currently mostly due to the protective measures. Focusing on these features and the role of epidemic management, we obtain differential equations for the total number of detected cases of Covid-19, which describe the actual curves in many countries almost with the accuracy of physics laws. The two-phase solution we propose works very well almost for the whole periods of the spread practically in all countries we analyzed that reached the saturation during the first waves. Bessel functions play the key role in our approach. Due to a very small number of parameters, namely, the initial transmission rate and the intensity of the hard and soft measures, we obtain a convincing explanation of the surprising uniformity of the curves of the total numbers of detected infections in many different areas. This theory can serve as a tool for forecasting the epidemic spread and evaluating the efficiency of the protective measures, which is very much needed for epidemics. As its practical application, the computer programs aimed at providing projections for late stages of Covid-19 proved to be remarkably stable in many countries, including Western Europe, the USA and some in Asia. We provide a projection for the saturation of the 3rd wave in the USA: the corresponding number of total, detected or not, cases can presumably reach then the herd immunity levels (G-strains). This can be used to analyze the efficiency of the vaccinations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3