Inactivation of mitochondrial Complex I stimulates chloroplast ATPase in Physcomitrella (Physcomitrium patens)

Author:

Mellon Marco,Storti Mattia,Vives Antoni Mateu Vera,Kramer David M.,Alboresi AlessandroORCID,Morosinotto TomasORCID

Abstract

AbstractWhile light is the ultimate source of energy for photosynthetic organisms, mitochondrial respiration is still fundamental for supporting metabolism demand during the night or in heterotrophic tissues. Respiration is also important for the metabolism of photosynthetically active cells, acting as a sink for excess reduced molecules and source of substrates for anabolic pathways. In this work, we isolated Physcomitrella (Physcomitrium patens) plants with altered respiration by inactivating Complex I of the mitochondrial electron transport chain by independent targeting of two essential subunits. Results show that the inactivation of Complex I causes a strong growth impairment even in fully autotrophic conditions in tissues where all cells are photosynthetically active. Complex I mutants show major alterations in the stoichiometry of respiratory complexes while the composition of photosynthetic apparatus was substantially unaffected. Complex I mutants showed altered photosynthesis with higher yields of both Photosystems I and II. These are the consequence of a higher chloroplast ATPase activity that also caused a smaller ΔpH formation across thylakoid membranes as well as decreased photosynthetic control on cytochrome b6f, possibly to compensate for a deficit in ATP supply relative to demand in Complex I mutants. These results demonstrate that alteration of respiratory activity directly impacts photosynthesis in P. patens and that metabolic interaction between organelles is essential in their ability to use light energy for growth.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3