Factors Underlying Asymmetric Dynamics of Disaggregase and Microtubule Severing AAA+ Machines

Author:

Damre Mangesh,Dayananda Ashan,Varikoti Rohith Anand,Stan GeorgeORCID,Dima Ruxandra I.ORCID

Abstract

AbstractDisaggregation and microtubule-severing nanomachines from the AAA+ (ATPases associated with various cellular activities) superfamily assemble into ring–shaped hexamers that enable protein remodeling by coupling large–scale conformational changes with application of mechanical forces within a central pore by loops protruding within the pore. We probed these motions and intra-ring interactions that support them by performing extensive explicit solvent molecular dynamics simulations of single-ring severing proteins and the double-ring disaggregase ClpB. Simulations reveal that dynamic stability of hexamers of severing proteins and of the nucleotide binding domain 1 (NBD1) ring of ClpB, which belong to the same clade, involves a network of salt bridges that connect conserved motifs of central PL1 loops of the hexamer. Clustering analysis of ClpB highlights correlated motions of domains of neighboring protomers supporting strong inter-protomer collaboration. Severing proteins have weaker inter-protomer coupling and stronger intra-protomer stabilization through salt bridges formed between PL2 and PL3 loops. Distinct mechanisms are identified in the NBD2 ring of ClpB involving weaker inter–protomer coupling through salt bridges formed by non–canonical loops and stronger intra–protomer coupling. Pore width fluctuations associated with the PL1 constriction in the spiral states, in the presence of a substrate peptide, highlight stark differences between narrowing of channels of severing proteins and widening of the NBD1 ring of ClpB. This indicates divergent substrate processing mechanisms of remodeling and translocation by ClpB and substrate tail-end gripping and possible wedging on microtubule lattice by severing enzymes. Relaxation dynamics of the distance between the PL1 loops and the centers of mass of protomers reveals observation-time-dependent dynamics, leading to predicted relaxation times of tens of microseconds on millisecond experimental timescales. For ClpB the predicted relaxation time is in excellent agreement with the extracted time from smFRET experiments.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3