Abstract
ABSTRACTPeritoneal dialysis (PD) is limited by glucose-mediated peritoneal membrane (PM) fibrosis, angiogenesis and ultrafiltration failure. Influencing PM integrity by pharmacologically targeting sodium-dependent glucose transporter (SGLT)-mediated glucose uptake has not been studied. In this study wildtype C57Bl/6N mice were treated with high-glucose dialysate via an intraperitoneal catheter, with or without addition of selective SGLT2 inhibitor dapagliflozin. PM structural changes, ultrafiltration capacity and PET status for glucose, urea and creatinine were analyzed. Expression of SGLT and GLUT was analyzed by real-time PCR, immunofluorescence and immunohistochemistry. Peritoneal effluents were analyzed for cellular and cytokine composition. We found that peritoneal SGLT2 was expressed in mesothelial cells and in skeletal muscle. Dapagliflozin significantly reduced effluent TGF-β concentrations, peritoneal thickening and fibrosis as well as microvessel density, resulting in improved ultrafiltration, despite the fact that it did not affect development of high glucose transporter status. In vitro, dapagliflozin reduced monocyte chemoattractant protein-1 release under high glucose conditions in human and murine peritoneal mesothelial cells. Pro-inflammatory cytokine release in macrophages was reduced only when cultured in high glucose conditions with an additional inflammatory stimulus. In summary, dapagliflozin improved structural and functional peritoneal health in the context of high glucose PD.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献