The Distal Appendage Protein CEP164 Is Essential for Efferent Duct Multiciliogenesis and Male Fertility

Author:

Hoque MohammedORCID,Chen DannyORCID,Hess Rex A.,Li Feng-Qian,Takemaru Ken-IchiORCID

Abstract

AbstractCilia are evolutionarily conserved microtubule-based structures that perform diverse biological functions. Cilia are assembled on basal bodies and anchored to the plasma membrane via distal appendages. Multiciliated cells (MCCs) are a specialized cell type with hundreds of motile multicilia, lining the brain ventricles, airways, and reproductive tracts to propel fluids/substances across the epithelial surface. In the male reproductive tract, MCCs in efferent ducts (EDs) move in a whip-like motion to stir the luminal contents and prevent sperm agglutination. Previously, we demonstrated that the essential distal appendage protein CEP164 recruits Chibby1 (Cby1), a small coiled-coil-containing protein, to basal bodies to facilitate basal body docking and ciliogenesis. Mice lacking CEP164 in MCCs (FoxJ1-Cre;CEP164fl/fl) show a significant loss of multicilia in the trachea, oviduct, and ependyma. In addition, we observed male sterility, however, the precise role of CEP164 in male fertility remained unknown. Here, we report that the seminiferous tubules and rete testis of FoxJ1-Cre;CEP164fl/fl mice exhibit substantial dilation, indicative of dysfunctional multicilia in the EDs. Consistent with these findings, multicilia were hardly detectable in the EDs of FoxJ1-Cre;CEP164fl/fl mice although FoxJ1-positive immature cells were present. Sperm aggregation and agglutination were commonly noticeable in the lumen of the seminiferous tubules and EDs of FoxJ1-Cre;CEP164fl/fl mice. In FoxJ1-Cre;CEP164fl/fl mice, the apical localization of Cby1 and the transition zone marker NPHP1 was severely diminished, suggesting basal body docking defects. TEM analysis of EDs further confirmed basal body accumulation in the cytoplasm of MCCs. Collectively, we conclude that deletion of CEP164 in the MCCs of EDs causes basal body docking defects and loss of multicilia, leading to sperm agglutination, obstruction of EDs, and male infertility. Our study therefore unravels an essential role of the distal appendage protein CEP164 in male fertility.Author SummaryMulticilia are tinny hair-like microtubule-based structures that beat in a whip-like pattern to generate a fluid flow on the apical cell surface. Multiciliated cells are essential for the proper function of major organs such as brain, airway, and reproductive tracts. In the male reproductive system, multiciliated cells are present in the efferent ducts, which are small tubules that connect the testis to the epididymis. However, the importance of multiciliated cells in male fertility remains poorly understood. Here, we investigated the role of the critical ciliary protein CEP164 in male fertility using a mouse model lacking CEP164 in multiciliated cells. Male mice are infertile with reduced sperm counts. We demonstrate that, in the absence of CEP164, multiciliated cells are present in the efferent ducts but fail to extend multicilia due to basal body docking defects. Consistent with this, the recruitment of key ciliary proteins is perturbed. As a result, these mice show sperm agglutination, obstruction of sperm transport, and degeneration of germ cells in the testis, leading to infertility. Our study therefore reveals essential roles of CEP164 in the formation of multicilia in the efferent ducts and male fertility.

Publisher

Cold Spring Harbor Laboratory

Reference51 articles.

1. Spermatogenesis: The Commitment to Meiosis

2. Histological and Histopathological Evaluation of the Testis

3. Spermatogenesis

4. Hess RA . Efferent Ductules: Structure and Function. In: Skinner MK , editor. Encyclopedia of Reproduction (Second Edition). Oxford: Academic Press; 2018. p. 270–8.

5. Small tubules, surprising discoveries: from efferent ductules in the turkey to the discovery that estrogen receptor alpha is essential for fertility in the male;Anim Reprod,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3