Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish embryos

Author:

Takasugi Paige R.,Wang Shengzhou,Truong Kimberly T.,Drage Evan P.,Kanishka Sahar N.,Higbee Marissa A.,Bamidele Nathan,Ojelabi Ogooluwa,Sontheimer Erik J.,Gagnon James A.ORCID

Abstract

AbstractThe CRISPR-Cas universe continues to expand. The type II CRISPR-Cas system from Streptococcus pyogenes (SpyCas9) is the most widely used for genome editing due to its high efficiency in cells and organisms. However, concentrating on a single CRISPR-Cas system imposes limits on target selection and multiplexed genome engineering. We hypothesized that CRISPR-Cas systems originating from different bacterial species could operate simultaneously and independently due to their distinct single-guide RNAs (sgRNAs) or CRISPR-RNAs (crRNAs), and protospacer adjacent motifs (PAMs). Additionally, we hypothesized that CRISPR-Cas activity in zebrafish could be regulated through the expression of inhibitory anti-CRISPR (Acr) proteins. Here, we use a simple mutagenesis approach to demonstrate that CRISPR-Cas systems from Streptococcus pyogenes (SpyCas9), Streptococcus aureus (SauCas9), Lachnospiraceae bacterium (LbaCas12a, previously known as LbCpf1), are orthogonal systems capable of operating simultaneously in zebrafish. CRISPR systems from Acidaminococcus sp. (AspCas12a, previously known as AsCpf1) and Neisseria meningitidis (Nme2Cas9) were also active in embryos. We implemented multichannel CRISPR recording using three CRISPR systems and show that LbaCas12a may provide superior information density compared to previous methods. We also demonstrate that type II Acrs (anti-CRISPRs) are effective inhibitors of SpyCas9 in zebrafish. Our results indicate that at least five CRISPR-Cas systems and two anti-CRISPR proteins are functional in zebrafish embryos. These orthogonal CRISPR-Cas systems and Acr proteins will enable combinatorial and intersectional strategies for spatiotemporal control of genome editing and genetic recording in animals.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3