Pharmacologic manipulation of complement receptor 3 prevents dendritic spine loss and cognitive impairment after acute cranial radiation

Author:

Hinkle Joshua J.,Olschowka John A.,Williams Jacqueline P.,O’Banion M. KerryORCID

Abstract

AbstractCranial irradiation induces healthy tissue damage that can lead to neurocognitive complications and negatively impact patient quality of life. One type of damage associated with cognitive impairment is loss of neuronal spine density. Based on developmental and disease studies implicating microglia and complement in dendritic spine loss, we hypothesized that irradiation-mediated spine loss is microglial complement receptor 3 (CR3)-dependent, and associated with late-delayed cognitive deficits. Utilizing a model of cranial irradiation (acute, 10 Gy gamma) in C57BL/6 mice we found that male mice demonstrate irradiation-mediated spine loss and cognitive deficits whereas female mice and CR3 knockout mice do not. Moreover, pharmacological blockade of CR3 with leukadherin-1 (LA1) prevented these changes in irradiated male mice. Interestingly, CR3 KO mice showed reduced behavioral task performance suggesting that CR3 is important for normal learning and memory. Improving our understanding of irradiation-mediated mechanisms and sexual dimorphic responses is essential for the identification of novel therapeutics to reduce irradiation-induced cognitive decline and improve patient quality of life.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Interventions for preventing and ameliorating cognitive deficits in adults treated with cranial irradiation;Cochrane Database Syst Rev,2014

2. Advanced radiotherapy for metastatic disease-a major stride or a futile effort?;Ann Palliat Med,2019

3. Radiation-induced brain injury: A review

4. Managing the cognitive effects of brain tumor radiation therapy

5. The Radioresponse of the Central Nervous System: A Dynamic Process

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microglia as Therapeutic Target for Radiation-Induced Brain Injury;International Journal of Molecular Sciences;2022-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3