Boreal forests will be more severely affected by projected anthropogenic climate forcing than mixedwood and northern hardwood forests in eastern Canada

Author:

Boulanger Yan,Puigdevall Jesus Pascual

Abstract

AbstractContextIncreased anthropogenic climate forcing is projected to have tremendous impacts on global forest ecosystems, with northern biomes being more at risk.ObjectivesTo model the impacts of harvest and increased anthropogenic climate forcing on eastern Canada’s forest landscapes and to assess the strong spatial heterogeneity in the severity, the nature and direction of the impacts expected within northern forest regions.MethodsWe used LANDIS-II to project species-specific aboveground biomass (AGB) between 2020 and 2150 under three climate (baseline, RCP 4.5 and RCP 8.5) and two harvest (baseline harvest, no harvest) scenarios within four forest regions (boreal west, boreal east, mixedwood and northern hardwood).ResultsClimate change impacts within the boreal forest regions would mainly result from increases in wildfires activity which will strongly alter total AGB. In the mixedwood and northern hardwood, changes will be less important and will result from climate-induced growth constraints that will alter species composition towards more thermophilous species. Climate-induced impacts were much more important and swifter under RCP 8.5 after 2080 suggesting that eastern Canada’s forests might cross important tipping points under strong anthropogenic climate forcing.ConclusionsBoreal forest regions will be much less resilient than mixedwood or northern hardwoods to the projected changes in climate regimes. Current harvest strategies will interact with anthropogenic climate forcing to further modify forest landscapes, notably by accelerating thermophilous species AGB gain in southernmost regions. Major changes to harvest practices are strongly needed to preserve the long-term sustainability of wood supply in eastern Canada. Adaptation strategies should be region-specific.

Publisher

Cold Spring Harbor Laboratory

Reference72 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3