Comparison of changes in electrical activity, in isolated and in vivo hearts, induced by voluntary exercise in female rats

Author:

Stones Rachel,Drinkhill Mark,White Ed

Abstract

AbstractRegular mild exercise is recommended to the general population as beneficial to health. Regular exercise typically leads to structural and electrical remodelling of the heart but in human studies it is difficult to relate the extrinsic and intrinsic influences on intact hearts to changes seen at the single cell level. In this study we wished to test whether changes in electrical activity in intact hearts, in response to voluntary wheel running exercise training, were consistent with our previous observations in single cardiac myocytes and whether these changes resulted in altered susceptibility to arrhythmic stimuli.Female rats performed 5 weeks of voluntary wheel running. Implanted telemetry transmitters were used to measure electrocardiograms (ECGs) and determine heart rate variability (HRV) in conscious, unrestrained, trained (TRN) and sedentary (SED) animals. In isolated hearts, left ventricular epicardial monophasic action potentials (MAPs) were recorded and the responses to potentially arrhythmic interventions were assessed.Exercise training caused cardiac hypertrophy, as indexed by a significantly greater heart weight to body weight ratio. Consistent with previous measurements of action potential duration in single myocytes, MAPs were significantly longer at 50%, 75% and 90% repolarization. Arrhythmic susceptibility was not different between SED and TRN hearts. Trained animals displayed significantly altered HRV by week 5, in a manner consistent with reduced sympathetic tone, however resting ECG parameters, including those most associated with repolarisation duration, were unaltered. We conclude that intrinsic changes to cellular cardiac electrophysiology, induced by mild voluntary exercise, are not attenuated by the electronic loading that occurs in intact hearts. However, in vivo, extrinsic neuro-hormonal control of the heart may minimize the effects of intrinsic alterations in electrical activity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3