Developing mammary terminal duct lobular units have a dynamic mucosal and stromal immune microenvironment

Author:

Nagy DorottyaORCID,Gillis Clare M. C.ORCID,Davies Katie,Fowden Abigail L.,Rees Paul,Wills John W.,Hughes KatherineORCID

Abstract

AbstractThe human breast and ovine mammary gland undergo a striking degree of postnatal development, leading to formation of terminal duct lobular units (TDLUs). In this study we interrogated aspects of sheep TDLU growth to increase understanding of ovine mammogenesis and as a model for the study of breast development. Mammary epithelial proliferation is significantly higher in lambs less than two months old than in peri-pubertal animals. Ki67 expression is polarized to the leading edge of the developing TDLUs. Intraepithelial ductal macrophages exhibit striking periodicity and significantly increased density in lambs approaching puberty. Stromal macrophages are more abundant centrally than peripherally. The developing ovine mammary gland is infiltrated by intraepithelial and stromal T lymphocytes that are significantly more numerous in older lambs. In the stroma, hotspots of Ki67 expression colocalize with large aggregates of lymphocytes and macrophages. Multifocally these aggregates exhibit distinct organization consistent with tertiary lymphoid structures. The lamb mammary gland thus exhibits a dynamic mucosal and stromal immune microenvironment and, as such, constitutes a valuable model system that provides new insights into postnatal breast development.Summary statementDevelopment of terminal duct lobular units in the sheep mammary gland involves distinct growth phases and macrophage and lymphocyte fluxes. Tertiary lymphoid structures are present subjacent to the mucosal epithelium.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Cellular Organization of the Mammary Gland: Insights From Microscopy;Journal of Mammary Gland Biology and Neoplasia;2021-03

2. Development and Pathology of the Equine Mammary Gland;Journal of Mammary Gland Biology and Neoplasia;2020-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3