STREME: Accurate and versatile sequence motif discovery

Author:

Bailey Timothy L.ORCID

Abstract

AbstractSequence motif discovery algorithms can identify novel sequence patterns that perform biological functions in DNA, RNA and protein sequences—for example, the binding site motifs of DNA- and RNA-binding proteins. The STREME algorithm presented here advances the state-of-the-art in ab initio motif discovery in terms of both accuracy and versatility. Using in vivo DNA (ChIP-seq) and RNA (CLIP-seq) data, and validating motifs with reference motifs derived from in vitro data, we show that STREME is more accurate, sensitive, thorough and rapid than several widely used algorithms (DREME, HOMER, MEME, Peak-motifs and Weeder). STREME’s capabilities include the ability to find motifs in datasets with hundreds of thousands of sequences, to find both short and long motifs (from 3 to 30 positions), to perform differential motif discovery in pairs of sequence datasets, and to find motifs in sequences over virtually any alphabet (DNA, RNA, protein and user-defined alphabets). Unlike most motif discovery algorithms, STREME accurately estimates and reports the statistical significance of each motif that it discovers. STREME is easy to use via its web server at http://meme-suite.org, and is fully integrated with the widely-used MEME Suite of sequence analysis tools, which can be freely downloaded at the same web site for non-commercial use.

Publisher

Cold Spring Harbor Laboratory

Reference19 articles.

1. DREME: motif discovery in transcription factor ChIP-seq data

2. T. L. Bailey and C. Elkan . The value of prior knowledge in discovering motifs with MEME. Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology, Cambridge, United Kingdom, July 16-19, 1995, 3:21–29, 1995.

3. On the Interpretation of χ 2 from Contingency Tables, and the Calculation of P

4. Quantifying similarity between motifs

5. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3