Interaction of Amphiphilic Lipoarabinomannan with Host Carrier Lipoproteins in Tuberculosis Patients: Implications for Blood-based Diagnostics

Author:

Jakhar Shailja,Sakamuri Ramamurthy,Vu Dung,Dighe Priya,Stromberg Loreen R.,Lilley Laura,Hengartner Nicolas,Swanson Basil I.,Moreau Emmanuel,Dorman Susan E.,Mukundan HarshiniORCID

Abstract

AbstractLipoarabinomannan (LAM), an amphiphilic lipoglycan of the Mycobacterium tuberculosis cell wall, is a diagnostic target for tuberculosis. Previous work from our laboratory and others suggests that LAM is associated with host serum lipoproteins, which may in turn have implications for diagnostic assays. Our team has developed two serum assays for amphiphile detection: lipoprotein capture and membrane insertion. The lipoprotein capture assay relies on capture of the host lipoproteins, exploiting the biological association of host lipoprotein with microbial amphiphilic biomarkers to “concentrate” LAM. In contrast, the membrane insertion assay is independent of the association between pathogen amphiphiles and host lipoprotein association, and directly captures LAM based on its thermodynamic propensity for association with a supported lipid membrane, which forms the functional surface of an optical biosensor. In this manuscript, we explored the use of these assays for the detection of LAM in sera from adults whose tuberculosis status had been well-characterized using conventional microbiological tests, and endemic controls. Using the lipoprotein capture assay, LAM signal/noise ratios were >1.0 in 29/35 (83%) individuals with culture-confirmed active tuberculosis, 8/13 (62%) individuals with tuberculosis symptoms but no positive culture for M. tuberculosis, and 0/6 (0%) symptom-free endemic controls. To evaluate serum LAM levels without bias associated with potential differences in circulating host lipoprotein concentrations between individuals, we subsequently processed available samples to liberate LAM from associated host lipoprotein assemblies followed by direct detection of the pathogen biomarker using the membrane insertion approach. Using the membrane insertion assay, signal/noise for detection of serum LAM was greater than that observed using the lipoprotein capture method for culture-confirmed TB patients (6/6), yet remained negative for controls (2/2). Taken together, these results suggest that detection of serum LAM is a promising TB diagnostic approach. Further work is required to optimize assay performance and to decipher the implications of LAM/host lipoprotein associations for diagnostic assay performance and TB pathogenesis.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. World Health Organization. Global tuberculosis report [Internet]. WHO, Geneva, Switzerland; 2019. Available from: https://www.who.int/tb/publications/global_report/en/

2. World Health Organization. High-priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting. In Proceedings of the WHO/HTM/TB/2014.18. WHO, Geneva, Switzerland; 2014.

3. Pathogen-derived biomarkers for active tuberculosis diagnosis;Front Microbiol.,2014

4. Immunological biomarkers of tuberculosis

5. Tuberculosis Biomarkers: From Diagnosis to Protection

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3