High Spatial-Resolution Imaging of the Dynamics of Cuticular Lipid Deposition During Arabidopsis Flower Development

Author:

Alexander Liza EstherORCID,Gilbertson Jena S.,Xie Bo,Song Zhihong,Nikolau Basil J.ORCID

Abstract

ABSTRACTThe extensive collection of glossy (gl) and eceriferum (cer) mutants of maize and Arabidopsis have proven invaluable in dissecting the branched metabolic pathways that support cuticular lipid deposition. This branched pathway integrates the fatty acid elongation-decarbonylative branch and the fatty acid elongation-reductive branch that has the capacity to generate hundreds of cuticular lipid metabolites. In this study a combined transgenic and biochemical strategy was implemented to explore and compare the physiological function of three homologous genes, Gl2, Gl2-like and CER2 in the context of this branched pathway. These biochemical characterizations integrated new extraction-chromatographic procedures with high-spatial resolution mass spectrometric imaging methods to profile the cuticular lipids on developing floral tissues transgenically expressing these transgenes in wild-type or cer2 mutant lines of Arabidopsis. Collectively, these datasets establish that both the maize Gl2 and Gl2-like genes are functional homologs of the Arabidopsis CER2 gene. In addition, the dynamic distribution of cuticular lipid deposition follows distinct floral organ localization patterns indicating that the fatty acid elongation-decarbonylative branch of the pathway is differentially localized from the fatty acid elongation-reductive branch of the pathway.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mapping the plant proteome: tools for surveying coordinating pathways;Emerging Topics in Life Sciences;2021-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3