Aerosol and bioaerosol particle size and dynamics from defective sanitary plumbing systems

Author:

Gormley MichaelORCID,Aspray Thomas J,Kelly David A

Abstract

AbstractAerosols are readily transported on airstreams through building sanitary plumbing and sewer systems and those containing microbial pathogens (known as bioaerosols) are recognised as contributors to infection spread within buildings. When a defect occurs in the sanitary plumbing system that affects the system integrity, a cross-transmission route is created that can enable the emission of bioaerosols from the system into the building. These emission occurrences are characterised as short-burst events (typically < 1 minute in duration) which makes them difficult to detect and predict. The characterisation of these emission events is the focus of this research.Two methods were used to characterise bioaerosol emission events in a full scale test rig: (i) an Aerodynamic Particle Sizer (APS) for particle size distribution and concentrations; and (ii) a slit-to-agar sampler to enumerate the ingress of a viable tracer microorganism (Pseudomonas putida). The APS data confirmed that most particles (> 99.5%) were <5 μm and were therefore considered aerosols. Particles generated within the sanitary plumbing system as a result of a toilet flush leads to emissions into the building during system defect conditions with an equivalence of someone talking loudly for over 6 and a half minutes. There were no particles detected of a size > 11μm anywhere in the system. Particle count was influenced by flush volume, but it was not possible to determine if there was any direct influence from airflow rate. Typical emissions resulting from a 6 litre flush were in the range of 280 – 400 particles per second at a concentration of typically 9 to 12 number per cm3 and a total particle count in the region of 3,000 to 4,000 particles, whereas the peak emissions from a 1.2 litre flush was 60 - 80 particles per second at a concentration of 2.4 to 3 number per cm3 and a total particle count in the region of 886 to 1045 particles. The reduction in particles is in direct proportion to the reduction in flush volume. The slit-to-agar sampler was able to provide viable time course CFU data and confirmed the origin of the particles to be the tracer microorganism flushed into the system. The time course data also has characteristics consistent with the unsteady nature of a toilet flush.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3