Nucleoid associated proteins and their effect onE. colichromosome

Author:

Gupta Ankit,Wasim Abdul,Mondal Jagannath

Abstract

AbstractA seemingly random and disorganized bacterial chromosome, in reality, is a well organized nucleus-like structure, called the nucleoid, which is maintained by several nucleoid associated proteins(NAPs). Here we present an application of a previously developed Hi-C based computational method to study the effects of some of these proteins on theE. colichromosome. Simulations with encoded Hi-C data for mutant, hupAB deficient,E. colicells, revealed a decondensed, axially expanded chromosome with enhanced short range and diminished long range interactions. Simulations for mutant cells deficient in FIS protein revealed that the effects are similar to that of the hupAB mutant, but the absence of FIS led to a greater disruption in chromosome organization. Absence of another NAP, MatP, known to mediate Ter macrodomain isolation, led to enhanced contacts between Ter and its flanking macrodomains but lacked any change in matS sites’ localization. Deficiency of MukBEF, the only SMC complex present inE. coli, led to disorganization of macrodomains. Upon further analysis, it was observed that the above mutations do not significantly impact the local chromosome organization (~ 100 Kb) but only affect the chromosome on a larger scale (>100 Kb). These observations shed more light on the sparsely explored effects of NAPs on the overall chromosome organization and helps us understand the myriad complex interactions NAPs have with the chromosome.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Remus T Dame , Fatema-Zahra M Rashid , and David C Grainger . Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nature Reviews Genetics, pages 1–16, 2019.

2. The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: A molecular perspective

3. Electron microscopy of membrane-free folded chromosomes from Escherichia coli

4. Bacterial Chromosome Organization and Segregation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3