ION-Decoding: A Single-channel Interactive Offline Neural Decoding Algorithm for a large number of neurons

Author:

Rastegari Mohsen,Marateb Hamid RezaORCID

Abstract

AbstractResearchers have widely used extracellular recordings as a technique of paramount importance due to its wide usage in cognitive studies, health technologies, and prosthetics and orthotics research. To extract the required information from this technique, a critical and crucial step, called spike sorting, must be performed on the recorded signal. By this method, it is possible to analyze a single neuron (single-unit activity) and investigate its specifications, such as the firing rates and the number of action potentials (spikes) of an individual neuron. Here we introduce a novel idea of a user-friendly interactive, offline, and unsupervised algorithm called ION-Decoding. This platform extracts and aligns the spikes using a high-resolution alignment method, and the clusters can be atomically identified and manually edited. The entire procedure is performed using the minimum number of adjustable parameters, and cluster merging was performed in a smart, intuitive way. The ION-Decoding algorithm was evaluated by a benchmark dataset, including 95 simulations of two to twenty neurons from 10 minutes simulated extracellular recordings. There was not any significant relationship between the number of missed clusters with the quality of the signal (i.e., the signal-to-noise ratio (SNR)) by controlling the number of neurons in each signal (p_value=0.103). Moreover, the number of extra clusters was not significantly dependent on the parameter SNR (p_value=0.400). The accuracy of the classification method was significantly associated with the decomposability index (DI) (p_value<0.001). A number of 77% of the neurons with the DI higher than 20 had the classification accuracy higher than 80%. The ION-Decoding algorithm significantly outperformed Wave_Clus in terms of the number of hits (p_value=0.017). However, The Wave_Clus algorithm significantly outperformed the ION-Decoding algorithm when the false-positive error (FP) was considered (p_value=0.001). The ION-Decoding is thus a promising single-channel spike sorting algorithm. However, our future focuses on the improvement of the cluster representative identification and FP error reduction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3