Comparing short and long batteries to assess deficits and their neural bases in stroke aphasia

Author:

Halai Ajay D.ORCID,De Dios Perez Blanca,Stefaniak James D.,Lambon Ralph Matthew A.

Abstract

AbstractMultiple language assessments are necessary for diagnosing, characterising and quantifying the multifaceted deficits observed in many patients’ post-stroke. Current language batteries, however, tend to be an imperfect trade-off between time and sensitivity of assessment. There have hitherto been two main types of battery. Extensive batteries provide thorough information but are impractically long for application in clinical settings or large-scale research studies. Clinically-targeted batteries tend to provide superficial information about a large number of language skills in a relatively short period of time by reducing the depth of each test but, consequently, can struggle to identify mild deficits, qualify the level of each impairment or reveal the underlying component structure. In the current study, we compared these batteries across a large group of individuals with chronic stroke aphasia to determine their utility. In addition, we developed a data-driven reduced version of an extensive battery that maintained sensitivity to mild impairment, ability to grade deficits and the component structure. The underlying structure of these three language batteries (extensive, shallow and data-reduced) was analysed using cross-validation analysis and principal component analysis. This revealed a four-factor solution for the extensive and data-reduced batteries, identifying phonology, semantic skills, fluency and executive function in contrast to a two-factor solution using the shallow battery (phonological/language severity and cognitive severity). Lesion symptom mapping using participants’ factor scores identified convergent neural structures based on existing language models for phonology (superior temporal gyrus), semantics (inferior temporal gyrus), speech fluency (precentral gyrus) and executive function (lateral occipitotemporal cortex) based on the extensive and data-reduced batteries. The two components in the shallow battery converged with the phonology and executive function clusters. In addition, we show that multivariate prediction models could be utilised to predict the component scores using neural data, however not for every component score within every test battery. Overall, the data-reduced battery appears to be an effective way to save assessment time yet retain the underlying structure of language and cognitive deficits observed in post stroke aphasia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3