Sex of donor cell and reprogramming conditions predict the extent and nature of imprinting defects in mouse iPSCs

Author:

Arez Maria,Eckersley-Maslin Melanie,Klobučar Tajda,von Gilsa Lopes João,Krueger Felix,Raposo Ana Cláudia,Gendrel Anne-Valerie,de Jesus Bruno Bernardes,da Rocha Simão TeixeiraORCID

Abstract

ABSTRACTReprogramming of somatic cells into induced Pluripotent Stem Cells (iPSCs) is a major leap towards personalized approaches to disease modelling and cell-replacement therapies. However, we still lack the ability to fully control the epigenetic status of iPSCs, which is a major hurdle for their downstream applications. A sensible indicator for epigenetic fidelity is genomic imprinting, a phenomenon dependent on DNA methylation, which is frequently perturbed in iPSCs by yet unidentified reasons. By using a secondary reprogramming system with murine hybrid donor cells, we conducted a thorough imprinting analysis using IMPLICON in multiple female and male iPSCs generated under different culture conditions. Our results show that imprinting defects are remarkably common in mouse iPSCs causing dysregulation of the typical monoallelic expression of imprinted genes. Interestingly, the nature of imprinting defects depends on the sex of the donor cell and their respective response to culture conditions. Under serum-free conditions, male iPSCs show global hypomethylation at imprinted regions, whereas in serum conditions show focal hypermethylation at specific loci. In contrast, female iPSCs always exhibit hypomethylation defects regardless of culture conditions. These imprinting defects are more severe than the global changes in DNA methylation, highlighting the sensitivity of imprinting loci to current iPSC generation protocols. Our results reveal clear predictors underlying different types of imprinting defects in mouse iPSCs. This knowledge is essential to devise novel reprogramming strategies aiming at generating epigenetically faithful iPSCs.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3