Disentangling the roles of human mobility and deprivation on the transmission dynamics of COVID-19 using a spatially explicit simulation model

Author:

Banks C.J.ORCID,Colman E.ORCID,Doherty T.ORCID,Tearne O.ORCID,Arnold M.ORCID,Atkins K.ORCID,Balaz D.ORCID,Beaunée G.ORCID,Bessell P.ORCID,Enright J.ORCID,Kleczkowski A.ORCID,Rossi G.ORCID,Ruget A.-S.ORCID,Kao R.R.ORCID

Abstract

SummaryRestrictions on mobility are a key component of infectious disease controls, preventing the spread of infections to as yet unexposed areas, or to regions which have previously eliminated outbreaks. However, even under the most severe restrictions, some travel must inevitably continue, at the very minimum to retain essential services. For COVID-19, most countries imposed severe restrictions on travel at least as soon as it was clear that containment of local outbreaks would not be possible. Such restrictions are known to have had a substantial impact on the economy and other aspects of human health, and so quantifying the impact of such restrictions is an essential part of evaluating the necessity for future implementation of similar measures.In this analysis, we built a simulation model using National statistical data to record patterns of movements to work, and implement levels of mobility recorded in real time via mobile phone apps. This model was fitted to the pattern of deaths due to COVID-19 using approximate Bayesian inference. Our model is able to recapitulate mortality considering the number of deaths and datazones (DZs, which are areas containing approximately 500-1000 residents) with deaths, as measured across 32 individual council areas (CAs) in Scotland. Our model recreates a trajectory consistent with the observed data until 1st of July. According to the model, most transmission was occurring “locally” (i.e. in the model, 80% of transmission events occurred within spatially defined “communities” of approximately 100 individuals). We show that the net effect of the various restrictions put into place in March can be captured by a reduction in transmission down to 12% of its pre-lockdown rate effective 28th March. By comparing different approaches to reducing transmission, we show that, while the timing of COVID-19 restrictions influences the role of the transmission rate on the number of COVID-related deaths, early reduction in long distance movements does not reduce death rates significantly. As this movement of individuals from more infected areas to less infected areas has a minimal impact on transmission, this suggests that the fraction of population already immune in infected communities was not a significant factor in these early stages of the national epidemic even when local clustering of infection is taken into account.The best fit model also shows a considerable influence of the health index of deprivation (part of the “index of multiple deprivations”) on mortality. The most likely value has the CA with the highest level of health-related deprivation to have on average, a 2.45 times greater mortality rate due to COVID-19 compared to the CA with the lowest, showing the impact of health-related deprivation even in the early stages of the COVID-19 national epidemic.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3