Characterization and Engineering ofStreptomyces griseofuscusDSM 40191 as a Potential Host for Heterologous Expression of Biosynthetic Gene Clusters

Author:

Gren Tetiana,Whitford Christopher M.,Mohite Omkar S.ORCID,Jørgensen Tue S.,Kontou Eftychia E.,Nielsen Julie B.,Lee Sang YupORCID,Weber TilmannORCID

Abstract

AbstractStreptomyces griseofuscusDSM 40191 is a fast growingStreptomycesstrain that remains largely underexplored as a heterologous host. Here, we report the genome mining ofS. griseofuscus, followed by the detailed exploration of its phenotype, including production of native secondary metabolites and ability to utilise carbon, nitrogen, sulphur and phosphorus sources. Furthermore, several routes for genetic engineering ofS. griseofuscuswere explored, including use of GusA-based vectors, CRISPR-Cas9 and CRISPR-cBEST-mediated knockouts. Using CRISPR-BEST technology, core genes of 4 biosynthetic gene clusters (BGCs) that are situated on the chromosome arms were inactivated and the outcomes of the inactivations were tested. Two out of the three native plasmids were cured using CRISPR-Cas9 technology, leading to the generation of strainS. griseofuscusDEL1. DEL1 was further modified by full deletion of a pentamycin BGC and an unknown NRPS BGC, leading to the generation of strain DEL2, lacking approx. 500 kbp of the genome, which corresponds to a 5,19% genome reduction. Sequencing confirmed that DEL2 does not bear any crucial off-target effects or rearrangements in its genome. It can be characterized by faster growth and inability to produce three main native metabolites ofS. griseofuscus: lankacidin, lankamycin, pentamycin and their derivatives. To test the ability of DEL2 to heterologously produce secondary metabolites, the actinorhodin BGC was used. We were able to confirm the production of actinorhodin by bothS. griseofuscuswild type and DEL2. We believe that this strain will serve as a good chassis for heterologous expression of BGCs.ImportanceThe rise of antibacterial resistance calls on the development of the next generation of antibiotics, majority of which are derived from natural compounds, produced by actinomycetes. The manipulation, refactoring and expression of BGCs coding for such natural products is a promising approach in secondary metabolite discovery. Thus, the development of a versatile panel of heterologous hosts for the expression of BGCs is essential. We believe that first-to-date systematic, detailed characterisation ofS. griseofuscus, a highly promising chassis strain, will not only facilitate the further development of this particular strain, but also will set a blueprint for characterisation of other potential hosts.

Publisher

Cold Spring Harbor Laboratory

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3