Sparse Epistatic Regularization of Deep Neural Networks for Inferring Fitness Functions

Author:

Aghazadeh AmiraliORCID,Nisonoff HunterORCID,Ocal OrhanORCID,Brookes David H.,Huang Yijie,Koyluoglu O. Ozan,Listgarten JenniferORCID,Ramchandran Kannan

Abstract

AbstractDespite recent advances in high-throughput combinatorial mutagenesis assays, the number of labeled sequences available to predict molecular functions has remained small for the vastness of the sequence space combined with the ruggedness of many fitness functions. Expressive models in machine learning (ML), such as deep neural networks (DNNs), can model the nonlinearities in rugged fitness functions, which manifest as high-order epistatic interactions among the mutational sites. However, in the absence of an inductive bias, DNNs overfit to the small number of labeled sequences available for training. Herein, we exploit the recent biological evidence that epistatic interactions in many fitness functions are sparse; this knowledge can be used as an inductive bias to regularize DNNs. We have developed a method for sparse epistatic regularization of DNNs, called the epistatic net (EN), which constrains the number of non-zero coefficients in the spectral representation of DNNs. For larger sequences, where finding the spectral transform becomes computationally intractable, we have developed a scalable extension of EN, which subsamples the combinatorial sequence space uniformly inducing a sparse-graph-code structure, and regularizes DNNs using the resulting greedy optimization method. Results on several biological landscapes, from bacterial to protein fitness functions, show that EN consistently improves the prediction accuracy of DNNs and enables them to outperform competing models which assume other forms of inductive biases. EN estimates all the higher-order epistatic interactions of DNNs trained on massive sequence spaces—a computational problem that takes years to solve without leveraging the epistatic sparsity in the fitness functions.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3