Abstract
AbstractThe functional consequences of the co-expression of synaptotagmin-1 and synaptotagmin-7 are unclear. We show that when present separately, synaptotagmin-1 and synaptotagmin-7 act as standalone fast and slow Ca2+-sensors for vesicle fusion in mouse chromaffin cells. When present together, synaptotagmin-7 stimulates Ca2+-dependent vesicle priming and inhibits depriming. The priming effect of Synaptotagmin-7 extends to the Readily Releasable Pool, whose fusion is executed by synaptotagmin-1, indicating synergistic action of the two Ca2+-sensors, although they are only partially colocalized. Synaptotagmin-7 promotes ubMunc13-2-dependent priming and the absence of synaptotagmin-7 renders phorbolesters less effective in stimulating priming, although synaptotagmin-7 independent priming is also observed. Morphologically, synaptotagmin-7 places vesicles in close membrane apposition (< 6 nm); in its absence vesicles accumulate out of reach of the fusion complex (20-40 nm). We suggest that a synaptotagmin-7-dependent movement toward the membrane is involved in Munc13-2/phorbolester/Ca2+-dependent priming and sets the stage for fast and slow exocytosis triggering.
Publisher
Cold Spring Harbor Laboratory