Abstract
ABSTRACTCytomegaloviruses (CMVs) are generally unable to cross species barriers, in part because prolonged coevolution with one host species limits their ability to evade restriction factors in other species. However, the limitation in host range is incomplete. For example, rhesus CMV (RhCMV) can replicate in human cells, albeit much less efficiently than in rhesus cells. Previously we reported that the protein kinase R (PKR) antagonist encoded by RhCMV, rTRS1, has limited activity against human PKR but is nonetheless necessary and sufficient to enable RhCMV replication in human fibroblasts (HF). We now show that knockout of PKR in human cells or treatment with the eIF2B agonist ISRIB, which overcomes the translational inhibition resulting from PKR activation, augments RhCMV replication in HF, indicating that human PKR contributes to the inefficiency of RhCMV replication in HF. Serial passage of RhCMV in HF reproducibly selected for viruses with improved fitness in human cells. The evolved viruses contain an inverted duplication of the terminal 6.8 kb of the genome, including rTRS1. The duplication replaces ~11.8 kb just downstream of an internal sequence element, pac1-like, which is very similar to the pac1 cleavage and packaging signal found near the terminus of the genome. Plaque-purified evolved viruses produced at least twice as much rTRS1 as the parental RhCMV and blocked the PKR pathway more effectively in HF. Southern blots revealed that unlike the parental RhCMV, viruses with the inverted duplication isomerize in a manner similar to HCMV and other herpesviruses that have internal repeat sequences. The apparent ease with which this duplication event occurs raises the possibility that the pac1-like site, which is conserved in Old World monkey CMV genomes, may serve a function in facilitating rapid adaptation to evolutionary obstacles.AUTHOR SUMMARYRhesus macaque CMV (RhCMV) is an important model for human CMV (HCMV) pathogenesis and vaccine development. Therefore, it is important to understand the similarities and differences in infectivity and interaction of these viruses with their host species. In contrast to the strict species-specificity of HCMV, RhCMV is able to cross species barriers to replicate in human cells. We know from past work that a component of this broader host range is RhCMV’s ability to counteract both the rhesus and human versions of a key antiviral factor. Here we delve further into the mechanisms by which RhCMV can adapt to counteract human cellular defenses. We find that RhCMV appears to be poised to undergo a specific genomic rearrangement that facilitates increased replication efficiency in human cells. Besides providing insights into CMV species-specificity and host barriers to cross-species transmission, this work also provides more generalized clues about viral adaptative mechanisms.
Publisher
Cold Spring Harbor Laboratory