SARS-CoV-2: Proof of recombination between strains and emergence of possibly more virulent ones

Author:

Haddad Dania,John Sumi Elsa,Mohammad AnwarORCID,Hammad Maha MORCID,Hebbar PrashanthaORCID,Channanath Arshad,Nizam Rasheeba,Al-Qabandi Sarah,Madhoun Ashraf AlORCID,Alshukry AbdullahORCID,Ali HamadORCID,Thanaraj Thangavel Alphonse,Al-Mulla FahdORCID

Abstract

AbstractCOVID-19 is challenging healthcare preparedness, world economies, and livelihoods. The infection and death rates associated with this pandemic are strikingly variable in different countries. To elucidate this discrepancy, we analyzed 2431 early spread SARS-CoV-2 sequences from GISAID. We estimated continental-wise admixture proportions, assessed haplotype block estimation, and tested for the presence or absence of strains recombination. Herein, we identified 1010 unique missense mutations and seven different SARS-CoV-2 clusters. In samples from Asia, a small haplotype block was identified; whereas, samples from Europe and North America harbored large and different haplotype blocks with nonsynonymous variants. Variant frequency and linkage disequilibrium varied among continents, especially in North America. Recombination between different strains was only observed in North American and European sequences. Additionally, we structurally modeled the two most common mutations D614G and P314L which suggested that these linked mutations may enhance viral entry and stability. Overall, we propose that COVID-19 virulence may be more severe in Europe and North America due to coinfection with different SARS-CoV-2 strains leading to genomic recombination which might be challenging for current treatment regimens and vaccine development. Furthermore, our study provides a possible explanation for the more severe second wave of COVID-19 that many countries are currently experiencing presented as higher rates of infection and death.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3