Age-dependent increase in α-tocopherol and phytosterols in maize leaves exposed to elevated ozone pollution

Author:

Wedow Jessica M.ORCID,Burroughs Charles H.ORCID,Rios Acosta LorenaORCID,Leakey Andrew D.B.ORCID,Ainsworth Elizabeth A.ORCID

Abstract

AbstractTropospheric ozone is a major air pollutant that significantly damages crop production around the world. Crop metabolic responses to rising chronic ozone stress have not been well-studied in the field, especially in C4 crops. In this study, we investigated the metabolomic profile of leaves from two diverse maize (Zea mays) inbred lines and the hybrid cross during exposure to season-long elevated ozone (~100 nL L−1) in the field using free air concentration enrichment (FACE) to identify key biochemical responses of maize to elevated ozone. Senescence, measured by loss of chlorophyll content, was accelerated in the hybrid line, B73 x Mo17, but not in either inbred line (B73 or Mo17). Untargeted metabolomic profiling further revealed that inbred and hybrid lines of maize differed in metabolic responses to ozone. A significant difference in the metabolite profile of hybrid leaves exposed to elevated ozone occurred as leaves aged, but no age-dependent difference in leaf metabolite profiles between ozone conditions was measured in the inbred lines. Phytosterols and α-tocopherol levels increased in B73 x Mo17 leaves as they aged, and to a significantly greater degree in elevated ozone stress. These metabolites are involved in membrane stabilization and chloroplast reactive oxygen species (ROS) quenching. The hybrid line also showed significant yield loss at elevated ozone, which the inbred lines did not. This suggests that the hybrid maize line was more sensitive to ozone exposure than the inbred lines, and up-regulated metabolic pathways to stabilize membranes and quench ROS in response to chronic ozone stress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3