Abstract
AbstractMarine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles, and help regulate climate. Though global surveys are starting to reveal ecological drivers underlying planktonic community structure, and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network – the community interactome – and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar), and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change, and forecasted most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios, while identifying plausible plankton bioindicators for ocean monitoring of climate change.
Publisher
Cold Spring Harbor Laboratory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献