Enzyme catalysis prior to aromatic residues: reverse engineering of a dephosphoCoA kinase

Author:

Makarov Mikhail,Meng Jingwei,Tretyachenko Vyacheslav,Srb Pavel,Březinová Anna,Giacobelli Valerio Guido,Bednárová Lucie,Vondrášek Jiří,Dunker A. Keith,Hlouchová Klára

Abstract

AbstractIt is well-known that the large diversity of protein functions and structures is derived from the broad spectrum of physicochemical properties of the 20 canonical amino acids. According to the generally accepted hypothesis, protein evolution was continuously associated with enrichment of this alphabet, increasing stability, specificity and spectrum of catalytic functions. Aromatic amino acids are considered the latest addition to genetic code.The main objective of this study was to test whether enzymatic catalysis can spare the aromatic amino acids (aromatics) by determining the effect of amino acid alphabet reduction on structure and function of dephospho-CoA kinase (DPCK). We designed two mutant variants of a putative DPCK from Aquifex aeolicus by substituting (i) Tyr, Phe and Trp or (ii) all aromatics (including His), i.e. ∼10% of the total sequence. Their structural characterization indicates that removal of aromatic amino acids may support rich secondary structure content although inevitably impairs a firm globular arrangement. Both variants still possess ATPase activity, although with 150-300 times lower efficiency in comparison with the wild-type phosphotransferase activity. The transfer of the phosphate group to the dephospho-CoA substrate is however heavily uncoupled and only one of the variants is still able to perform the reaction.Here we provide support to the hypothesis that proteins in the early stages of life could support at least some enzymatic activities, despite lower efficiencies resulting from the lack of a firm hydrophobic core. Based on the presented data we hypothesize that further protein scaffolding role may be provided by ligands upon binding.SignificanceAll extant proteins rely on the standard coded amino acid alphabet. However, early proteins lacked some of these amino acids that were incorporated into the genetic code only after the evolution of their respective metabolic pathways, aromatic amino acids being among the last additions. This is intriguing because of their crucial role in hydrophobic core packing, indispensable for enzyme catalysis.We designed two aromatics-less variants of a highly conserved enzyme from the CoA synthesis pathway, capable of enzyme catalysis and showing significant ordering upon substrate binding. To our knowledge, this is the first example of enzyme catalysis in complete absence of aromatic amino acids and presents a possible mechanism of how aromatics-less enzymes could potentially support an early biosphere.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3