Metabolic selection of a homologous recombination mediated loss of glycosomal fumarate reductase inTrypanosoma brucei

Author:

Wargnies Marion,Plazolles Nicolas,Schenk Robin,Villafraz Oriana,Dupuy Jean-WilliamORCID,Biran Marc,Bachmaier Sabine,Baudouin Hélène,Clayton ChristineORCID,Boshart Michael,Bringaud FrédéricORCID

Abstract

AbstractThe genome of trypanosomatids is rearranged at the level of repeated sequences, where serve as platforms for amplification or deletion of genomic segments. We report here that thePEPCKgene knockout (Δpepck) leads to the selection of such a deletion event between theFRDgandFRDm2genes to produce a chimericFRDg-m2gene in the Δpepck*cell line. FRDg is expressed in peroxisome-like organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is a non-functional cytosolic FRD. Re-expression of FRDg significantly impaired growth of the Δpepck*cells, while inhibition ofFRDg-m2expression had no effect, which indicated that this recombination event has been selected in the Δpepck*cells to eliminate FRDg. FRD activity was not involved in the FRDg-mediated negative effect, while its auto-flavinylation motif is required to impair growth. Considering that (i) FRDs are known to generate reactive oxygen species (ROS) by transferring electrons from their flavin moiety(ies) to oxygen, (ii) intracellular ROS production is essential for the differentiation of procyclic to epimastigote forms of the parasite and (iii) the fumarate reductase activity is not essential for the parasite, we propose that the main role of FRD is to produce part of the ROS necessary to complete the parasitic cycle in the tsetse fly. In this context, the negative effect of FRDg expression in the PEPCK null background is interpreted as an increased production of ROS from oxygen since fumarate, the natural electron acceptor of FRDg, is no longer produced in glycosomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3