Machine learning analysis highlights the down-trending of the proportion of COVID-19 patients with a distinct laboratory result profile

Author:

Yang He S.,Hou Yu,Zhang Hao,Chadburn Amy,Westblade Lars F.,Fedeli Richard,Steel Peter A.D.,Racine-Brzostek Sabrina E.ORCID,Velu Priya,Sepulveda Jorge L.,Satlin Michael J.,Cushing Melissa M.,Kaushal Rainu,Zhao Zhen,Wang Fei

Abstract

AbstractBackgroundNew York City (NYC) experienced an initial surge and gradual decline in the number of SARS-CoV-2 confirmed cases in 2020. A change in the pattern of laboratory test results in COVID-19 patients over this time has not been reported or correlated with patient outcome.MethodsWe performed a retrospective study of routine laboratory and SARS-CoV-2 RT-PCR test results from 5,785 patients evaluated in a NYC hospital emergency department from March to June employing machine learning analysis.ResultsA COVID-19 high-risk laboratory test result profile (COVID19-HRP), consisting of 21 routine blood tests, was identified to characterize the SARS-CoV-2 patients. Approximately half of the SARS-CoV-2 positive patients had the distinct COVID19-HRP that separated them from SARS-CoV-2 negative patients. SARS-CoV-2 patients with the COVID19-HRP had higher SARS-CoV-2 viral loads, determined by cycle-threshold values from the RT-PCR, and poorer clinical outcome compared to other positive patients without COVID19-HRP. Furthermore, the percentage of SARS-CoV-2 patients with the COVID19-HRP has significantly decreased from March/April to May/June. Notably, viral load in the SARS-CoV-2 patients declined and their laboratory profile became less distinguishable from SARS-CoV-2 negative patients in the later phase.ConclusionsOur study visualized the down-trending of the proportion of SARS-CoV-2 patients with the distinct COVID19-HRP. This analysis could become an important tool in COVID-19 population disease severity tracking and prediction. In addition, this analysis may play an important role in prioritizing high-risk patients, assisting in patient triaging and optimizing the usage of resources.

Publisher

Cold Spring Harbor Laboratory

Reference25 articles.

1. A Novel Coronavirus from Patients with Pneumonia in China, 2019

2. An interactive web-based dashboard to track COVID-19 in real time

3. Clinical characteristics of covid-19 in new york city;N Engl J Med,2020

4. Health NYSDo. Covid-19: Data. Available at https://www1.Nyc.Gov/site/doh/covid/covid-19-data.Page. 2020.

5. New York City Health. https://www1.Nyc.Gov/site/doh/covid/covid-19-data.Page. Accessed 10/13/2020..

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3