Chemical signatures of human odour generate a unique neural code in the brain of Aedes aegypti mosquitoes

Author:

Zhao ZhileiORCID,Zung Jessica L.ORCID,Kriete Alexis L.ORCID,Iqbal AzwadORCID,Younger Meg A.ORCID,Matthews Benjamin J.ORCID,Merhof DoritORCID,Thiberge StephanORCID,Strauch MartinORCID,McBride Carolyn S.ORCID

Abstract

AbstractA globally invasive form of the mosquito Aedes aegypti specializes in biting humans, making it an efficient vector of dengue, yellow fever, Zika, and chikungunya viruses. Host-seeking females strongly prefer human odour over the odour of non-human animals, but exactly how they distinguish the two is not known. Vertebrate odours are complex blends of volatile chemicals with many shared components, making discrimination an interesting sensory coding challenge. Here we show that human and animal odour blends evoke activity in unique combinations of olfactory glomeruli within the Aedes aegypti antennal lobe. Human blends consistently activate a ‘universal’ glomerulus, which is equally responsive to diverse animal and nectar-related blends, and a more selective ‘human-sensitive’ glomerulus. This dual signal robustly distinguishes humans from animals across concentrations, individual humans, and diverse animal species. Remarkably, the human-sensitive glomerulus is narrowly tuned to the long-chain aldehydes decanal and undecanal, which we show are consistently enriched in (though not specific to) human odour and which likely originate from unique human skin lipids. We propose a model of host-odour coding wherein normalization of activity in the human-sensitive glomerulus by that in the broadly-tuned universal glomerulus generates a robust discriminatory signal of the relative concentration of long-chain aldehydes in a host odour blend. Our work demonstrates how animal brains may distil complex odour stimuli of innate biological relevance into simple neural codes and reveals novel targets for the design of next-generation mosquito-control strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3