SINE Retrotransposons Import Polyadenylation Signals to 3’UTRs in Dog (Canis familiaris)

Author:

Choi Jessica D.ORCID,Del Pinto Lelani A.ORCID,Sutter Nathan B.ORCID

Abstract

AbstractBackgroundMessenger RNA 3’ untranslated regions (3’UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3’UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy number. When inserted into genes they can disrupt expression, alter splicing, or cause nuclear retention of mRNAs. The genomes of the domestic dog and other carnivores carry hundreds of thousands Can-SINEs, a tRNA-related SINE with transcription termination potential. Because of this we asked whether Can-SINEs may help terminate transcript in some dog genes.ResultsDog 3’UTRs have several peaks of AATAAA PAS frequency within 40 bp of the 3’UTR end, including four bp-interval peaks at 28, 32, and 36 bp from the end. The periodicity is partly explained by TAAA(n) repeats within Can-SINE AT-rich tails. While density of antisense-oriented Can-SINEs in 3’UTRs is fairly constant with distances from 3’end, sense-oriented Can-SINEs are common at the 3’end but nearly absent farther upstream. There are nine Can-SINE sub-types in the dog genome and the consensus sequence sense strands (head to tail) all carry at least three PASs while antisense strands usually have none. We annotated all repeat-masked Can-SINE copies in the Boxer reference genome and found that the young SINEC_Cf type has a mode of 15 bp for target site duplications (TSDs). We find that all Can-SINE types favor integration at TSDs beginning with A(4). The count of AATAAA PASs differs significantly between sense and antisense-oriented retrotransposons in transcripts. Can-SINEs near 3’UTR ends are very likely to carry AATAAA on the mRNA sense strand while those farther upstream are not. We also identified loci where Can-SINE insertion has truncated or altered a dog 3’UTR compared to the human ortholog.ConclusionDog Can-SINE activity has imported AATAAA PASs into gene transcripts and led to alteration of 3’UTRs. AATAAA sequences are selectively removed from Can-SINEs in introns and upstream 3’UTR regions but are retained at the far downstream end of 3’UTRs, which we infer reflects their role as termination sequences for these transcripts.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3