Contractile reprogramming of cardiac pericytes by MEK inhibition promotes arteriologenesis of the ischemic heart

Author:

Avolio ElisaORCID,Katare Rajesh,Thomas Anita C,Caporali Andrea,Schwenke Daryl,Meloni Marco,Caputo Massimo,Madeddu Paolo

Abstract

AbstractBackgroundThe development of collateral arteries after a myocardial infarction (MI) was intensively studied, while the mechanism by which pericytes (PCs) contribute to arteriologenesis remains unexplored. This study aimed to 1) investigate if cardiac PCs gain functional features of contractile vascular smooth muscle cells (VSMCs) in vitro, and 2) determine if this potential can be evoked pharmacologically to encourage heart arteriologenesis in vivo.MethodsPCs were immunosorted as CD31neg/CD34pos cells from human and mouse hearts. Contractile reprogramming was induced by either depletion of growth factors or addition of PD0325901, a clinically available MEK inhibitor. Next generation RNA-Sequencing was performed in naïve and differentiated human PCs to assess the whole-transcriptome profile. Three in vivo studies were conducted in C57BL6/J mice to determine: 1) the ability of human PCs to promote arteriole formation when implanted subcutaneously within PD0325901-containing Matrigel plugs, 2) the effect of orally administered PD0325901 on the arteriole density of normoperfused hearts, and 3) the possibility of promoting capillary formation and muscularization of the infarcted heart through the same pharmacological approach.ResultsRemoval of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) from the culture medium induced the differentiation of PCs into contractile VSMC-like cells. Because both growth factors induce the extracellular signal-regulated kinase 1/2 (ERK1/2) signalling, we attempted to induce PC differentiation in vitro and in vivo using PD0325901. RNA-sequencing revealed that differentiated PCs were enriched in transcripts associated with smooth muscle contraction and biological function. PD0325901-treated PCs rapidly acquired antigenic and functional features of contractile VSMCs in vitro. Moreover, human PCs formed new arterioles when implanted subcutaneously within PD0325901-containing Matrigel plugs in mice. Oral administration of PD0325901 for two weeks increased the density and expression of contractile proteins in small-calibre arterioles of the murine heart, thereby increasing myocardial perfusion. Similarly, PD0325901 induced reparative arteriologenesis and capillarization, reduced the scar, and improved left ventricular performance in a murine model of MI.ConclusionWe propose a novel method to promote the heart vascularization through the pharmacological modulation of resident mural cells. This novel approach could have an immediate impact on the treatment of coronary artery disease.Clinical perspectiveWhat is new?Human myocardial pericytes have intrinsic vascular plasticity that can be pharmacologically evoked using PD0325901, a clinically available MEK inhibitor.In mice, the pharmacological inhibition of ERK1/2 signalling, by the oral administration of PD0325901 for 2 weeks, encouraged the heart arteriologenesis through pericyte differentiation.In a preclinical mouse model of myocardial infarction, the oral administration of PD0325901 for 2 weeks induced reparative arteriologenesis and capillarization, reduced the scar, and improved left ventricular performance.What are the clinical implications?This novel drug-based therapeutic approach is readily available to all patients.Therefore, it could have an immediate clinical impact for the treatment of coronary artery disease and other heart conditions associated with deficient coronary vascularization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3